ABSTRACT

The absorption of orally administered compounds is largely determined by their ability to pass through the gastrointestinal tract, or to overcome solubility issues. The permeability studies using artificial membranes are essential for gaining insight into the mechanisms of absorption can be gained. Permeability studies using artificial membranes are essential for gaining insight into the mechanisms of absorption can be gained. The AAPS Journal 2006, 8, E1–E13.

RESULTS

In vitro, intracellular absorption is performed using Caco-2 cell monolayers. The AAPS Journal 2006, 8, E1–E13.

CONCLUSIONS

PAMPA has for the past several years played an important role in drug discovery and development. PAMPA offers a rapid and cost-effective method for assessing permeability properties of a drug substance.

METHODS

1. Experimental Protocol

A low-membrane integrity marker (Lucifer yellow) is also included in the test compound solution. The experimental recovery is calculated from donor and acceptor compartment concentrations.

2. Data Analysis

The donor and acceptor samples from each experiment are quantified by LC-MS/MS analysis using a tailored laboratory-information management system – enabling the analysis of large numbers of discovery compounds in a cost-effective manner.

REFERENCES

FIGURES AND TABLES

TABLE 1

Effect of pH on PAMPA permeability for acidic and basic compounds.

TABLE 2

Comparison of Cloe Screen PAMPA. It was evident from the data that the experimental recovery is calculated from donor and acceptor compartment concentrations.

TABLE 3

Classification of CNS positive and CNS negative compounds using PAMPA at pH 7.

FIGURE 2

Comparison of Cloe Screen PAMPA data from the first party data.

FIGURE 3

Classification of CNS positive and CNS negative compounds using PAMPA at pH 7.