Adaptive control of glycerol & methanol feeding in recombinant P. pastoris cultures: Impact on antibody titre

Filipe Ataíde¹, Ana R. Ferreira², João J. Clemente², António E. Cunha², Rui Oliveira¹,²*
¹CQFB/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, P-2829-516 Caparica, Portugal
²IBET/ITQB Instituto de Biologia Experimental e Tecnológica / Instituto de Tecnologia Química e Biológica, Apartado 12, P-2781-901 Oeiras, Portugal

Abstract

Pichia pastoris processes for heterologous protein expression are typically run in three phases: a batch phase, an exponential feeding fed-batch phase and a long oxygen transfer limitation (OTL) phase. The final protein titre is often limited by the oxygen availability in the OTL phase. In this paper, a direct adaptive controller is designed for the OTL phase. The controller was validated in pilot P. pastoris cultivations expressing a single chain antibody fragment (ScFv). This work shows that the proposed controller can regulate the dissolved oxygen tension (DOT) at very low levels (5 %) with high stability by manipulating the glycerol feeding rate, thereby enhancing the oxygen transfer at high cell density, which finally leads to a higher antibody titre.

Introduction

Pichia pastoris is currently viewed as a very promising host for heterologous protein expression[1] since it can be easily manipulated at molecular genetic level, it has the ability to express high levels of proteins, either intra or extracellularly and it has the capability to perform eukaryotic post-translational modifications[2–5]. P. pastoris is normally cultivated in fed-batch mode in order to limit the amount of substrate in the reactor, being able to grow at very high cell densities with massive oxygen uptake requirements, turning the oxygen transfer capacity into a critical limitation factor. Once the maximum oxygen transfer rate is reached, regulation of DOT at very low values by manipulating the carbon source feeding is performed, which has been proposed by several authors[2–5].

Process control feeding strategy

The control of P. pastoris cultivation is based on carbon source limitation, based in 3 major steps:
- Cultivation in batch mode with an initial substrate concentration ~ 80g/L – glycerol batch (GB) phase;
- Glycerol feeding according to an exponential profile – glycerol fed-batch (GFB) phase;
- DO control through an adaptive DO-stat feeding controller – oxygen transfer limitation (OTL) phase

Adaptive DO-stat glycerol feeding controller

Material mass balance:
\[\frac{dC_o}{dt} = \frac{F}{V_o} (C_{o_i} - C_o) + \frac{k_d}{V_o} (C_{o_i} - C_o) - \frac{dA_p}{dt} + k_p F \]

Model reference design:
\[\frac{dA}{dt} = \frac{x - x_r}{\tau_c} \]

Controller equation:
\[F = \theta (t); x + K (t) x \rightarrow F = \theta (t) x + K (t) x_r \]

General considerations:
- Glycerol accumulation is negligible;
- Dynamics of \(K_p \) and \(\tau_c \) depend much lower than \(x \rightarrow \) linear quasi time-invariant system[6];
- \(K_p \) and \(\tau_c \) are considered as piecewise time-varying unknown parameters;
- System uniformly stable in the Lyapunov sense.

Results

Table 1: The effect of different factors on productivity

<table>
<thead>
<tr>
<th>DOT (%)</th>
<th>pH</th>
<th>Medium</th>
<th>Starting biomass (g/l)</th>
<th>Productivity (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>Defined</td>
<td>755.8</td>
<td>171.8</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>Defined</td>
<td>143.1</td>
<td>250.6</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>Defined</td>
<td>156.3</td>
<td>323.9</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>Complex</td>
<td>245.8</td>
<td>428.0</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td>Defined</td>
<td>122.3</td>
<td>232.4</td>
</tr>
</tbody>
</table>

- Decrease in pH → increase in productivity (inhibition of proteolysis)[7];
- Decrease in DO-set point → increase in productivity;
- Defined medium → decrease in productivity (when compared to complex medium);
- Initial biomass concentration → no visible correlation on the impact on productivity.

References

Acknowledgements

This work was supported by the Portuguese Fundação para a Ciência e Tecnologia through a Ph.D. grant SFRH/BD/36285/2007.