Organic azide synthesis in microreactors: from optimization to lab scale production

Pieter J. Nieuwland1, Bo Hanssen2, Kasper Koch1, Paul Janssen2, Marielle E. Delville1, Anton Lunshof1 and Floris P.J.T. Rutjes1
FutureChemistry Holding BV, Toernooiveld 100, 6525 EC Nijmegen, the Netherlands
1Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
1p.nieuwland@futurechemistry.com

Organic azides play an increasingly important role in the chemical industry1. Because azides are prone to explosive decomposition2, production and handling must proceed with great caution. Flow chemistry offers a benefit in the production phase, because better heat and concentration control avoid building up of hot spots3. Furthermore, the technology is ideal for reaction screening, since it allows testing of reaction parameters in a fast and efficient way. In this study, formation of benzyl azide by diazotransfer to benzyl amine was screened and subsequently scaled up using continuous flow chemistry.

Benzyl azide synthesis

We investigated the synthesis of benzyl azide (3) as a general procedure for the synthesis of organic azides in flow. Benzyl azide was prepared from benzyl amine (1) in a diazotransfer reaction. Imidazole-1-sulfonyl azide hydrogen chloride (2) was used as diazotransfer reagent. This reagent was synthesised according to literature procedure4.

Organic azide synthesis in microreactors: from optimization to lab scale production

Step 1: Batch scale

A quenching method to stop the reaction was developed to ensure well-defined reaction times in a continuous flow system. Hydrochloric acid in ethyl acetate and acetone was found to be an adequate quenching agent. Furthermore, a fast GC analysis method was developed.

Step 2: Continuous flow system

Experimental conditions for continuous flow were determined. A methanol/dichloromethane mixture was used as a solvent. Trial runs were performed to ensure robust behaviour of the liquids in the flow system. The ranges of parameters to be optimised were determined in single variate experiments.

Step 3: Optimisation in a microreactor system

FutureChemistry’s FlowScreen automated optimisation setup was used. The system was equipped with glass microreactors with volumes of 7.0 and 92 μL in order to cover a wide range of reaction times.

Step 4: Data processing

The reaction was performed in a Uniqsis FlowSyn continuous flow system. Optimal parameters, established in step 4, were used.

Conclusions

The diazotransfer reaction could easily be translated to flow chemistry. Optimal conditions for the reaction were obtained using small scale, automated microreactor hardware, and were successfully used to perform a lab scale flow experiment.

References


For Future Chemistry

Pieter J. Nieuwland1*, Bo Hanssen1, Kasper Koch1, Paul Janssen2, Marielle M.E. Delville1, Anton Lunshof1 and Floris P.J.T. Rutjes1
1FutureChemistry Holding BV, Toernooiveld 100, 6525 EC Nijmegen, the Netherlands
2Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
*p.nieuwland@futurechemistry.com

Step 5: Lab scale continuous flow

The reaction was performed in a Uniqsis FlowSyn continuous flow system. Optimal parameters, established in step 4, were used.

Total yield of azide: 1.45 g
(80% isolated yield, workup procedure not optimised)
Total run time: 95 min

The system was equipped with glass microreactors with volumes of 7.0 and 92 μL in order to cover a wide range of reaction times.

The diazotransfer reaction could easily be translated to flow chemistry. Optimal conditions for the reaction were obtained using small scale, automated microreactor hardware, and were successfully used to perform a lab scale flow experiment.

References


For Future Chemistry

Pieter J. Nieuwland1*, Bo Hanssen1, Kasper Koch1, Paul Janssen2, Marielle M.E. Delville1, Anton Lunshof1 and Floris P.J.T. Rutjes1
1FutureChemistry Holding BV, Toernooiveld 100, 6525 EC Nijmegen, the Netherlands
2Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
*p.nieuwland@futurechemistry.com

Step 5: Lab scale continuous flow

The reaction was performed in a Uniqsis FlowSyn continuous flow system. Optimal parameters, established in step 4, were used.

Total yield of azide: 1.45 g
(80% isolated yield, workup procedure not optimised)
Total run time: 95 min

The diazotransfer reaction could easily be translated to flow chemistry. Optimal conditions for the reaction were obtained using small scale, automated microreactor hardware, and were successfully used to perform a lab scale flow experiment.

References


For Future Chemistry

Pieter J. Nieuwland1*, Bo Hanssen1, Kasper Koch1, Paul Janssen2, Marielle M.E. Delville1, Anton Lunshof1 and Floris P.J.T. Rutjes1
1FutureChemistry Holding BV, Toernooiveld 100, 6525 EC Nijmegen, the Netherlands
2Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
*p.nieuwland@futurechemistry.com

Step 5: Lab scale continuous flow

The reaction was performed in a Uniqsis FlowSyn continuous flow system. Optimal parameters, established in step 4, were used.

Total yield of azide: 1.45 g
(80% isolated yield, workup procedure not optimised)
Total run time: 95 min

The diazotransfer reaction could easily be translated to flow chemistry. Optimal conditions for the reaction were obtained using small scale, automated microreactor hardware, and were successfully used to perform a lab scale flow experiment.

References


For Future Chemistry

Pieter J. Nieuwland1*, Bo Hanssen1, Kasper Koch1, Paul Janssen2, Marielle M.E. Delville1, Anton Lunshof1 and Floris P.J.T. Rutjes1
1FutureChemistry Holding BV, Toernooiveld 100, 6525 EC Nijmegen, the Netherlands
2Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
*p.nieuwland@futurechemistry.com