This study dealt with the determination of copper (Cu\(^{2+}\)) ion adsorption capacity of dried roots and above ground vegetative structure of Eichhornia crassipes taken from Lake Palapacuene in San Pablo, Laguna. Both the adsorption by roots and aerial portion fitted the Langmuir and Freundlich models suggesting that the biosorption mechanism is complex. The dried roots and aerial part biomass of E. crassipes were excellent biosorbents for copper with \(q_{\max}\) value of 2000.00 mg/g and 714.29 mg/g respectively. Results also showed that adsorption of copper by dried roots is significantly higher than that of dried aerial part (p value= 0.0236). Results of the study also showed that pH, contact time, biosorbent dose, and initial concentration affect the adsorption capacity. The highest percent sorption by both aerial and root part of the E. crassipes biomass was at pH 5.0 giving sorption values of 61.00% and 72.41% respectively. Results of this study revealed that the dried biomass of E. crassipes has the potential to clean up wastewater and mine tailings with copper. Further studies on the mechanism of adsorption and adsorption capacity for other heavy metals are recommended.

INTRODUCTION

Eichhornia crassipes, the biosorbent material that was used in the study, was identified to be an invasive species due to its high proliferation rate and posed problems in Lake Palapacuene. Several studies have proven that live water hyacinth can be used for phytoremediation and recovery of heavy metals but only few studies have ventured on the use of dried water hyacinth biomass for biosorption of heavy metal. This study was an attempt to determine the copper (II) ion adsorption capacity of dried roots and above ground vegetative structure of E. crassipes biomass. It aimed to study the maximum adsorption rate using equilibrium models (Freundlich and Langmuir) and using varying factors (pH, contact time, biosorbent dose, initial concentration). Copper contamination due to mining and heavy metal industries is a problem in the Philippines and this study aims to look at the potential of dried biomass of E. crassipes, to be an alternative solution to waste water treatment.

METHODOLOGY

PROCUREMENT AND PREPARATION OF MATERIALS

BIOSORBENT PREPARATION

(Sampling, washing, drying, sieving)

BIOSORPTION EXPERIMENTS

HEAVY METAL ANALYSIS (Flame AAS)

DATA ANALYSIS

(Kinetics and equilibrium (Freundlich and Langmuir))

RESULTS

EFFECT OF pH

![Figure 1. There is an increase in percentage adsorption of copper as the pH increases. The root part of the biomass has higher Cu (II) adsorption compared to the aerial part from pH 2.5.](image)

EFFECT OF BIOSORBENT DOSE

![Figure 2. There is an increase in percent adsorption of copper as the biosorbent dose increases.](image)

LANGMUIR AND FREUNDLICH MODELS

<table>
<thead>
<tr>
<th>Type of Biomass</th>
<th>Langmuir</th>
<th>Freundlich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(q_{\max})</td>
<td>(b)</td>
</tr>
<tr>
<td>ROOTS</td>
<td>2000</td>
<td>0.022</td>
</tr>
<tr>
<td>AERIAL</td>
<td>714</td>
<td>0.109</td>
</tr>
</tbody>
</table>

Table 1. Experimental Parameters for Langmuir and Freundlich Isotherms.

KINETICS

<table>
<thead>
<tr>
<th>Type of Biomass</th>
<th>1st Order Kinetics</th>
<th>2nd Order Kinetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOTS</td>
<td>0.7998</td>
<td>0.9993</td>
</tr>
<tr>
<td>AERIAL</td>
<td>0.8198</td>
<td>0.9889</td>
</tr>
</tbody>
</table>

Table 1. Both adsorption by roots and aerial part of E. crassipes fitted the second order kinetics model.

CONCLUSION/RECOMMENDATIONS

It has been proven in this study that both the dried roots and aerial portions of Eichhornia crassipes collected from Lake Palapacuene in San Pablo, Laguna have high copper adsorption capacity. The maximum adsorption capacity exceeded many previously reported uptakes by other biomass and it was found that the root adsorbed significantly higher amounts of copper. Results of the experiment fitted the Langmuir and Freundlich isothermal equilibrium models thus suggesting a complex adsorption mechanism. Results of the experiment also showed that several factors such as pH, contact time, biosorbent dose, and initial concentration affects the adsorption of copper ions from aqueous solutions. Equilibrium time adsorption was attained 60-90 minutes after shaking the solutions with the biosorbent at 200 rpm in an incubator shaker. It was noted that rapid adsorption occurred within the first 60-90 and eventually rate of sorption decreased after this contact time. Maximum percent adsorption occurred at pH 5, initial concentration 25.00 mg/L, and at 0.60 grams of biomass.

Since this study revealed that E. crassipes can be a potential biosorbent for copper ions in aqueous solution, it is recommended that further studies on this topic will be conducted. Experiments that deal with other heavy metals (such as chromium, mercury, and nickel) and other water pollutants (organic waste) is recommended. Other factors such as temperature may be studied in order to determine the Arrhenius factor. Since the study found out that dried roots of E. crassipes has higher sorption capacity than the top portion biomass, further research may focused on the use of the root parts. Experiments on biosorption using dried roots of E. crassipes on the treatment of actual wastewater from heavy metal industries or acid mine tailings may be conducted after further studies on the interaction of copper with other heavy metal were done.

ABSTRACT

This study dealt with the determination of copper (Cu\(^{2+}\)) ion adsorption capacity of dried roots and above ground vegetative structure of Eichhornia crassipes taken from Lake Palapacuene in San Pablo, Laguna. Both the adsorption by roots and aerial portion fitted the Langmuir and Freundlich models suggesting that the biosorption mechanism is complex. The dried roots and aerial part biomass of E. crassipes were excellent biosorbents for copper with \(q_{\max}\) value of 2000.00 mg/g and 714.29 mg/g respectively. Results also showed that adsorption of copper by dried roots is significantly higher than that of dried aerial part (p value= 0.0236). Results of the study also showed that pH, contact time, biosorbent dose, and initial concentration affect the adsorption capacity. The highest percent sorption by both aerial and root part of the E. crassipes biomass was at pH 5.0 giving sorption values of 61.00% and 72.41% respectively. Results of this study revealed that the dried biomass of E. crassipes has the potential to clean up wastewater and mine tailings with copper. Further studies on the mechanism of adsorption and adsorption capacity for other heavy metals are recommended.